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Non equilibrium viscous shock layer flows produced near the stagna- 
tion point of a blunt body constitute a standard problem in hypersonic 
flow theory. This flow configuration is usually modeled with the viscous 
shock layer (VSL) equations derived by writing the full Navier-Stokes 
equations in boundary-layer coordinates and performing an order of 
magnitude analysis. The terms retained in this process assure that for 
moderate Reynolds numbers the resulting equations are uniformly valid 
between the body surface and the shock, which may be treated as a thin 
discontinuity. The VSL equations are generally solved by starting with 
the thin layer approximation (TVSL). Boundary conditions are 
specified at the body surface and the Rankine-Hugoniot relations are 
imposed at the shock. Because the position of the shock is not known, 
one has to solve a free boundary problem. This paper presents a novel 
solution procedure for this situation. A reduced coordinate is intro- 
duced and the free boundary problem is transformed into a nonlinear 
eigenvalue problem. The new problem for an augmented set of 
variables is then solved with Newton iterations and adaptive gridding. 
The method is illustrated in the paper with a solution of the thin shock 
layer equations at the stagnation streamline. The solution obtained on 
this line is then used as an initial condition for a two-dimensional 
marching procedure. The complete axisymmetric problem is solved by 
performing fully coupled Newton iterations; moreover, we consider a 
new enlarged unknown function including the shock location. The 
model includes detailed transport properties and complex kinetics for 
air dissociation and ionization. However, in order to focus on the 
numerical method and for the sake of simplicity, thermodynamic 
equilibrium is assumed. 0 1992 Academic Press. Inc. 

* This research was supported by Dassault Aviation under Contract 
Number RDMF 86-8. 

1. INTRODUCTION 

The study of reentry into the Earth’s atmosphere is of 
fundamental interest in many recent space flight projects 
like the trans-atmospheric airplane or the Hermes space- 
plane. One of the most critical problems for the designer is 
that of the large rates of heat transfer and high temperatures 
at the nose and leading edges of the vehicle. An efficient heat 
protection system is needed and requires special attention. 
This system should be carefully designed and in particular 
its weight should be minimized in order to increase the 
payload that may be carried into orbit. 

While wind-tunnel testing provides some of the data that 
is required to determine the aerothermodynamic environ- 
ment of the thermal protection system (TPS), it is not 
possible to obtain a complete simulation of reentry flow 
conditions in ground-testing facilities. More recently, data 
from space shuttle flights have become available and they 
are being used to evaluate the performance of the protection 
system and verify numerical predictions. Flight data are, 
however, insufficient for design operations. Under these 
circumstances, numerical simulations of the flowfield 
constitute an essential tool. During the last 30 years, 
considerable efforts have been made to improve the 
computational methods and the physical models which may 
be used to describe the high enthalpy flows found during 
atmospheric reentry. 

The problem of computing the hypersonic laminar flow at 
moderate Reynolds number past axisymmetric blunt bodies 
has been approached in several ways. Two of these methods 
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are through the solution of first- and second-order 
boundary-layer equations and through numerical solution 
of the viscous shock layer equations. This later method 
is investigated in this paper. Viscous shock layer (VSL) 
techniques have become increasingly important with the 
development of parabolized Navier-Stokes (PNS) codes. 
This is because VSL solutions yield relatively fast and 
accurate blunt body solutions compared to the time 
consuming Navier-Stokes computations. 

Early studies of viscous shock layers for hypersonic 
applications were conducted by, among others, 
Blottner [ 1 ] and Bush [2]. In addition, second-order 
boundary-layer effects for hypersonic flows were studied 
most notably by Davis and Fliigge-Lotz [3]. In 1970, 
Davis [4] introduced a method for solving the viscous 
shock layer equations for a perfect gas flow. Many studies 
based on Davis’ method and dealing with more complex 
physical descriptions of the flowfield (chemical non- 
equilibrium, wall catalycity, high-altitude effects, etc.) are 
available, as, for example, those of Lewis and his colleagues 
or Scott [S-S]. The viscous shock layer equations are 
derived by writing the full Navier-Stokes equations in 
boundary-layer coordinates and performing an order of 
magnitude analysis of the various terms appearing in the 
governing equations. The terms retained in this process 
assure that the resulting equations are uniformly valid 
between the shock and the body surface for moderate 
Reynolds numbers. Davis’ method uses an iterative process 
to deal with the ellipticity of both the governing equations 
and the boundary conditions. The first iteration of this 
process consists, on one hand, in solving a simplified set 
of equations derived from the thin viscous shock layer 
approximation (TVSL). On the other hand, to remove the 
ellipticity of the shock boundary conditions, Davis assumed 
that the first derivative of the shock standoff distance with 
respect to the streamwise coordinate is equal to zero. This 
assumption means that the shock and the body surface are 
concentric, and hence that the shock standoff distance is 
constant along the body. Of course, this is not the case and 
this assumption is removed with successive iterations. 

However, one should point out that some more recent 
studies as, for example, Ref. [ 71 do not assume a concentric 
shock for the first iteration. Instead a more realistic initial 
shock shape is calculated separately, using, for instance, an 
Euler code and then input to the VSL code. 

In the present study, we will derive new relations at the 
shock by performing an order of magnitude analysis of the 
terms appearing in the Rankine-Hugoniot relations. Terms 
involving shock location second derivatives of elliptic 
nature are indeed eliminated, but first derivative terms are 
retained and included in the marching step procedure. It is 
thus possible to take into account realistic variations of the 
shock shape at the first iteration (TVSL) of the solution 
process. Each iteration consists of two steps. The first one 

comes from the specialization of the governing equations at 
the stagnation streamline which results in a two-point 
boundary value problem with a free boundary. The second 
one corresponds to the complete 2D marching step 
calculation which starts with an initial condition given by 
the solution on the stagnation streamline. 

By introducing a reduced coordinate, the free boundary 
problems are transformed into non-linear eigenvalue 
problems. From a numerical point of view, Davis’ method 
is based on the solution of each equation successively. 
However, it has been shown [9, lo] that this could lead to 
numerical instabilities and prevent the convergence to a 
solution far downstream. Waskiewicz et al. [lo] have partly 
solved this problem by coupling the total mass balance and 
the balance of normal momentum. 

In the present paper, the resulting two-point boundary 
value problems are solved with a method combining finite 
differences, fully-coupled Newton iterations, and adaptive 
gridding [ 1 l-151. Pseudo-unsteady fully implicit iterations 
are also used in order to bring the starting estimates into the 
domain of convergence of Newton’s method. However, no 
unsteady terms are appended to the coupled hydrodynamic- 
eigenvalue equations. The eigenvalue is also considered as a 
function of the transformed coordinate in order to maintain 
the block tridiagonal structure of the discrete equations. 
The usual no-slip boundary conditions are imposed at the 
body wall. The model includes detailed transport properties 
and complex kinetics for air dissociation. However, in order 
to focus on a novel method for solving the VSL equations, 
we will use a simplified physical model. It is assumed that 
the flow is at thermodynamic equilibrium, so that there is 
only one temperature at each point. To take into account 
ionization, we will use an air model comprising seven 
species (0,, 0, N,, N, NO, NO+, and e-) coupled by 18 
elementary reactions [ 161. The simplified physical model 
adopted here is sufficiently realistic for a demonstration of 
the numerical method. 

The viscous shock layer equations are presented in 
Section 2. The numerical method is described in Section 3 
and typical numerical results are discussed in Section 4. 

2. GOVERNING EQUATIONS 

2.1. Conservation Equations 

The viscous shock layer governing equations are the 
equations for conservation of total mass, species mass, 
momentum, and energy [ 1, 3, 4, 6, 71. Using a local 
coordinate system (s, n), where s is measured along the 
body surface and n is normal to the body surface (see 
Fig. l), the total mass conservation may be written 

8P 5 + -& { ; (r’pu) + $ (JYrjpv)] = 0, (1) 
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FIG. 1. 
system. 

Body surface 

Schematic of the flow configuration and the local coordinate 

where p is the density, H = 1 + rcn is a curvature term, K is 
the curvature of the body surface, r is the radius from the 
axis of symmetry, (u, v) are the mass averaged flow velocity 
components in the local coordinate system, t is the time. In 
this equation and those given below, j= 0 and j= 1 
correspond respectively to two-dimensional and axisym- 
metric flows. The tangential momentum conservation 
equation may be written 

au pu au au pKuv 1 ap 
P&+-jp-&+P”~+-g-+-g~ 

--&~(JPrj~(pJ)=o, (2) 

where p is the pressure and q is the viscosity. The normal 
momentum conservation may be written 

(3) 

According to the thin layer approximation [4] this 
equation becomes 

pKU2 ap 
-y+=-&=o. (4) 

The species mass conservation equation is 

ayk puar, ark 
P,,+,,s+pvx- wkOk 

+ -j$-&@r’pY*vk)=O, kEXX, (5) 

where Yk is the mass fraction of the kth species, V, is the 
normal component of the diffusion velocity of the kth 
species, W, is the molecular weight of the k th species, ok is 
the molar production rate of the kth species, X = { 1, . . . . K} 
are the species indices, and K is the number of species. The 
total energy conservation may be written as 

aT u aT a ap u ap ap 
PCP 

at+35+% -at-I%Yr5i 7 

-$-.-gmqJ-f-g 

+ 1 PYkVkCPk 

aT 
an+ c h,W,qc=O, (6) 

ksX kt.X 

where T is the temperature, c, is the constant pressure heat 
capacity of the mixture, Cpk is the constant pressure heat 
capacity of the kth species, A is the thermal conductivity of 
the mixture, and hk is the specific enthalpy of the kth 
species. 

2.2. Equations along the Stagnation Streamline s = 0 

In order to obtain the steady governing equations along 
the stagnation streamline, all the dependent variables C$ are 
expanded near s = 0 in the form 

$(.s, n) = sim(J(n) +x2$(n) + O(s4)), (7) 

where the index i, is zero except for the polar radius r and 
the u velocity component for which i, = i, = 1. Substitution 
of these expansions into the governing equations leads to 
the following two-point boundary value problem with a free 
boundary. The conservation equations become 

‘+L+ _ l 
2 

--&~(wl’+‘)““)=o~ (8) 

-&f(jp(2+j)q($-$))=0, (9) 

(10) 

--+dp=o, Pk-U' 
2 dn (11) 

(I +j)pyk Fk) = 0, kEXX, (12) 
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- - 
+ c PYkVkC,k 

dT 
z+ 1 h,W,o,=O. (13) 

ksX ks.f 

One may notice that Eq. (10) indicates that the first term 
in the pressure series expansion p is constant along the 
stagnation streamline. 

2.3. Boundary Conditions 

The boundary conditions at the shock are provided by 
the Rankine-Hugoniot relations. The shock location is 
denoted by cr(s), so that at n = a(s) the following relations 
express the conservation of mass, tangential and normal 
momentum, energy, and species 

p(s, a(s))( -u(s, a(s)) sin 0 + v(s, a(s)) cos 0) 

=pmum sin(a+8), (15) 

u(s, a(s)) cos 8 + v(s, a(s)) sin ~9 = -u, cos(a + r3), (16) 

p(s, a(~))( -u(s, a(s)) sin 0 + u(s, a(s)) cos O)‘+ p(s, a(s)) 

=pmvZ, sin2(a+ O)+p,, (17) 

$ (-u(s, a)) sin 8 + v(s, a(s)) cos 0)’ + h(s, a(s)) 

= 4 v’, sin2(cc + 0) + h,, (18) 

yk(s, ds)) = yk.cc 9 keX, (19) 

where the subscript cc refers to the uniform state in front of 
the shock, h is the enthalpy of the mixture and pm, u,, pm, 
and h, denote respectively the density, pressure, normal 
velocity, and enthalpy of air in front of the shock. In these 
relations CI designates the angle between the tangent to the 
body surface and the axis of symmetry and 0 is the angle 
between the tangent to the body surface and the tangent to 
the shock (see Fig. l), i.e., 

1 +Ka 

‘OS ‘= ((1 + Ka)‘+ (da/ds)‘)“” 

(dalds ) 
Sin8=((1+~a)2+(da/ds)2)1’2’ 

(20) 

Note that the chemistry is assumed to be frozen through the 
shock. Mixed boundary conditions could also be used as 
described in Ref. [4]. Equations (15t( 19) written at s = 0 
then yield the following relations at the shock ~7 = a(0): 

- - 
p(a) ~(a)=p,u,, 

p(a) V2(C) + p(a) = p,v’, + pa, 

~C’(a)+h(C)=~v~+h,, 

rk(a)= yk,,, keX. 

(21) 

(22) 

(23) 

(24) 

By specifying the state law and the thermodynamic expres- 
sions for the enthalpy of the mixture h, these equations can 
be solved to provide the values, at the shock, of p, V, p, 
and r These values will be denoted p8, U#, p#, and T#,, 
respectively, in the following development. 

To obtain a complete set of boundary conditions, expres- 
sions for U and @ have to be determined. Davis [4] has 
shown that the expansion of the boundary conditions 
(15)-( 19) around s = 0 only provides elliptic relations, i.e., 
that zi and d appear as functions of ~5 which is not known 
until the shock is determined downstream in the vicinity of 
the stagnation streamline. To start the iteration process, 
Davis assumed that 

da 
-& (s) = 0. 

According to (20), this implies that cos 8 = 1 and sin 0 = 0, 
and consequently that 0(s) = 0, so that the body surface and 
the shock are locally concentric. The matching conditions at 
the shock then become 

As, a(s)) 45 a(s)) = pm 0, sin 4 (26) 

u(s, a(s)) = -v, cos a, (27) 

PCS, a(s)) v2(s, a(s)) + pt.5 a(s)) = pm v”, sin’ ~1 + pm, 

(28) 

4 u2(s, a(s)) + h(s, a(s)) = $ v’, sin’ c1+ h,, (29) 

yk(s5 ab))= yk,my ke:. (30) 

These relations replace the general expressions (15 )( 19). It 
may be shown that they also lead to Eqs. (21)-(24) on the 
stagnation streamline. 

From Eqs. (26)-(30) and using the fact that 
(d*a/ds’)(s) = 0, one finds that 

- - 
u(a) = -KU,, (31) 

Note that in the previous assumptions, there is no coupling 
between the field calculation and the variations of the shock 
shape. This may lead to significant errors in the shock 
standoff distance, especially downstream for highly curved 
bodies like spheres. Davis has shown that this later 
approximation may be removed with successive iterations 
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[4]. However, it appears more adequate to take into 
account the shock shape variations even in the TVSL 
calculations and derive new relations at the shock. By 
performing an order of magnitude analysis, we find that 

cos 8 - 1, sin 0-$-c, (33) 

and, keeping terms up to first order (-TVSL approxima- 
tion) in the Rankine-Hugoniot conditions (15)-(19), we 
obtain the following set of simplified expressions: 

P(& 4s)) 
( 

-4% 4s)) z+ 4% 4s)) 
> 

=poov, sin c1, (34) 

u(s, a(s)) = -0, cos a, (35) 

p(s, a(s)) = pm v’, sin* a, (36) 

h(s, a(s)) = 1 II’, sin’ a, (37) 

Ykh 4s)) = Yk.02 3 kEX. (38) 

By expanding these relations around s = 0, it is then found 
that 

P(~)fi(4=Pmv,, (39) 

p(~)=Pm~~r (40) 

h(a)= iv;, (41) 

Fkk(5) = Yk,,, kEX, (42) 

u(a) = -KU,, (43) 

B(O)= -p&%~. (44) 

The values of U and jj at the shock will be denoted Ua and jj, 
in the following. Expressions (39)-(44) and (34)-(38) con- 
stitute a new set of conditions at the shock for the modified 
TVSL approximation. When used in place of the classical 
conditions (21)-(24), (31 k(32), and (26)-(30), they yield 
an improved thin viscous shock layer solution. 

The boundary conditions at the body surface may also 
require a careful analysis if one wishes to describe catalytic 
effects. For simplicity we consider that a no-slip condition 
determines the velocity components, that the temperature of 
the surface is specified, and that the mixture close to the 
surface is in chemical equilibrium. The corresponding 
conditions are 

D(S, 0) = 0, (45) 

u(s, 0) = 0, (46) 

Yk(S, 0) = Yk,.,, kE%X, (47) 

T(s, 0) = T,,, (48) 

where T, denotes the body wall temperature and Y,,, is the 
air equilibrium mass fraction at T,. On the stagnation 
streamline, one obtains 

U(0) = 0, (49) 

ii(O) = 0, (50) 

Fkk(O) = Yk,.,, kEX, (51) 

T(O) = T,.. (52) 

At this stage one may note that there are two boundary con- 
ditions for the normal velocity v(s, o(s)) (or U), although 
Eq. (1) (or (8)) is only first order. The extra boundary 
condition II = v, (or V = 6,) will indeed determine the shock 
location c7 (or 6). 

2.4. Thermodynamics and Chemistry 

The equation of state is written in the form 

P=PWRT, (53) 

where 1/W=&,, Y,/W, is the molecular weight of the 
mixture and R is the universal gas constant. Species 
thermodynamic properties like cpk or hk are estimated from 
polynomial fits of Baulknight’s data [ 171 and the mixture 
constant pressure heat capacity cP and enthalpy h are given 
by 

cp= 1 YkC,k> 
kcX 

h=J; 

(54) 
cp( T’) dT’ + c Y,h,( To). 

kcX 

We also consider Ielementary reversible reactions involving 
K chemical species 

1 Viz!& ti C v;iXk, iE3, (55) 
kc3’ keX 

where y is the set of reaction indices, %k is the symbol of the 
k th species, and vii and vi, are the soichiometric coefficients. 
The production rate of the kth species can then be written 
as 

“k = c tv;, - di) qi, 
is4 

(56) 
qi=%fi n [f&klvid-~ri n [?&kl”“‘~ 

krX kEX 

where qi is the rate of progress variable of the ith reaction 
and appears as the difference between the forward and 
reverse rates, [?&I is the molar concentration of the kth 
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species, and G$ and %$, are the forward and reverse rate 
constants of the ith reaction. Denoting X, the mole fraction 
of the kth species, the quantities X,, Y,, and [X,] are 
related by X, = Y, WJW, and [f&l = pX,/RT, where 
W= C,“= i X, W,. The forward and reverse rate constants 
for the ith reaction are taken in the form G$= 
Ai TpJ exp( - E,IRT) and VFi = %“/%?ei, where A, is the pre- 
exponential factor, B, is the temperature exponent, E, is the 
activation energy, and gPi is the equilibrium constant of the 
ith reaction. In some reactions an arbitrary third body, 
usually denoted M, is required for the reaction to proceed. 
In this situation the rate of progress qi must be multiplied by 
an effective third body concentration ctb, = Ck E X uki [?&I, 
where the ski are one if all the species contribute equally as 
third bodies [ 183. 

2.5. Transport Properties 

A simplified transport algorithm is adopted in the present 
paper. The normal component of the diffusion velocity is 
divided into two parts 

v,=-y;,+ v,, (57) 

where 

Vk = -D, 2 log X, 

and 

Dk = ( 1 - Y,) c (x,l%,). (59) 
Ifk 

In these expressions “Y^k is the diffusion velocity due to 
species gradients and is evaluated with the Hirschfelder- 
Curtiss approximation and gkl is the binary diffusion coef- 
ficient for the species pair (k, Z). The velocity V, is a correc- 
tion velocity included to ensure that the mass is conserved 
v,n= -&EST Ykvk [19]. It has been shown in Ref. [20] 
that these diffusion velocities are accurate approximations 
of those exactly obtained by inverting the Stefan-Maxwell 
equations. The transport coefficients ‘I, I, and gk, are finally 
expressed in terms of the state variables p, T, Y,, k E X, and 
molecular parameters. The corresponding formulas may be 
found in Ref. [ 191. Note that ambipolar diffusion is used to 
determine the diffusion coefficients for ionic species. 

3. NUMERICAL METHOD 

We have seen in the previous sections that on the stagna- 
tion streamline the thin viscous shock layer equations 
reduce to a two-point boundary value problem with a free 
boundary. The unknown function ZZ’ has the components - - 
2 = (6, U, @, T, Y,, . . . . FK) and is defined on the unknown 

interval [0,6]. A simplified system of equations modeling a 
perfect gas and derived from (8k( 13), (39)-(44), and 
(49)-(52) is investigated in Ref. [21] from a mathematical 
point of view and the existence of a solution is established. 
The first step of the numerical method is to transform the 
free boundary value problem into a nonlinear eigenvalue 
problem by introducing the transformed coordinate [22] 

5 = n/6. (60) 

This transformation is suggested by other studies of free 
boundary value problems (see Ref. [22]). The same techni- 
que is also useful in theoretical investigations like those of 
Refs. [21], [23]. An alternative approach could be to use 
invariant embedding techniques and Riccati type equa- 
tions [24]. A problem arising from the introduction of the 
enlarged unknown (3, a), however, is that the corre- 
sponding discrete equations are no longer in block- 
tridiagonal form. To remove this difficulty, a classical 
procedure consists in considering 5 as a function of 5: and 
adding the dummy equation 

dc 

z=O. 
(61) 

This procedure is rather standard and it is adopted, for 
example, in Ref. [25] to construct an adaptive continuation 
procedure for flame calculations. We thus consider a new - - - - unknown function X = (u, U, p, T, Y,, . . . . PK, 5) defined on 
the unit interval [0, 11. Introducing the operator 

F= 

(1 +j)pq 

- -2 
PU 1 dj? --+_- 
2 r~ & 

. . . . . . . . . . . . . . . . . . . . . . ..o..........*.. 

p Y, v, cpk dT 
+ 1 ~ -&+ c hkwkmk 

ks.XF ksX 
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where the dotted lines stand for the species equations, and libraries are used to handle chemistry and transport proper- 
the corresponding boundary operators 

9q = 

v 
u 

- -2 
wu 1 dj 

--+-I2 
2 

. . . . . . . . . . . 

Fk - Yk. It’ 
. . . . . . . . . . . 

T- T, 

d6 

z 

u-u, 
d-k, 

. . . . . . . ...* 

Fk - Yk,, 
. . . . . . . . . . . 

T- T, 

V-77, 

ties [14, 18, 19, 261. A system of linear block tridiagonal 
equations must be solved at each iteration for corrections 
to the previous solution vector. In practice, a modified 
Newton’s method is employed in which the Jacobian is 
re-evaluated periodically [27]. We terminate the Newton 
iteration when 

ljxn+ -Y/l, = IIJ-'(X")F(X")IJ, < TOL (67) 

where we typically take TOL = lo-‘. 
It has been shown by Deuflhard [12] that the scaling by 

the inverse of the Jacobian of the function residuals is better 
suited to Newton’s method and is affine invariant. The pre- 

(63 1 vious criterion has been used extensively in flame problems 
(see Ref. [14]) and guarantees the accuracy of the solution 
on the given grid 2. To assure that the converged discrete 
solution correctly represents the continuous solution, the 
grid is adaptively densilied. This consists in successively 
refining the grids in such a way that for the final grid Ewe 
have 

(63) 

where .c&?~ and ~8~ are evaluated at 5 = 0 and 5 = 1, respec- 
tively, we must solve the two point boundary value problem 
(S?,,, 8, ~8r)(X) = 0. Note that the extra boundary condition 
for the normal velocity U is used as a “boundary condition” 
for the eigenvalue r?. With the continuous differential 
operators replaced by difference expressions, we seek a 
discrete approximation X, of !Z” on a mesh E [ 111, 

Z={O=&<~*< ... <tM=l}, (64) 

solution of a nonlinear system of difference equations 

FE(X,-) = 0, 

where FE denote the discrete equations and h4 is the number 
of grid points. For an initial solution estimate X0 that is 
sufficiently close to X,, the system of equations in (65) can 
be solved by Newton’s method. We write 

J(Xn)(Xn+ l - X”) = -1, F(Y), n = 0, 1, . ..) (66) 

where X” denotes the nth iterate, 2, is the n th damping 
parameter, 0 < R, < 1, which should be chosen to ensure a 
reduction in the size of the Newton corrections at each itera- 
tion [12], and J is the Jacobian matrix. The Jacobian 
matrix is obtained by finite differences and subroutine 

m = 0, 1, . . . . M- 1, f~6P, (68) 

where o,, 1 E 2, is a family of weights and E,, 1 E 9, are 
small numbers, less than one. The family of weights is 
usually formed by the gradients and second derivatives of 
each component of the solution vector and of mesh 
regularity weights as explained in Refs. [ 13, 15, 25, 271. 

One of the advantages of Newton’s method is the fast rate 
of convergence. A potential problem, however, is that, on 
each grid, the corresponding starting estimates must be in 
the domain of convergence of the method. In order to sup- 
press this sensitivity to starting estimates and to bring these 
estimates into the domain of convergence of Newton’s 
method, pseudo-unsteady fully implicit iterations are used. 
Unsteady terms are only appended to the species and energy 
equations which then take the form 

1 
+ jp(l +i)c ay Q? “+“fiFkkk)=O, kEX, (69) 
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No unsteady terms are added to the coupled 
hydrodynamiceigenvalue equations. 

To obtain the solution at a downstream station (s > 0), 
one has to consider a two-point boundary value problem 
with first derivatives with respect to the streamwise coor- 
dinate s (Eqs. (l)-(6), boundary conditions (34)-(38) and 
(45)~(48)). The unknown function $“” has the components 
Ci’-‘““= (u, u, p, T, Y1, . . . . Y,) and is defined on the unknown 
interval [O, a(s)]. To ensure the continuity of the operators 
and thus the continuity of the solution (when s -+ 0) and to 
ease the initialization of the marching step procedure, it is 
convenient to introduce transformed coordinates and new 
dependent variables 

shock layer at altitude z = 66 km for a freestream Mach 
number of M, = 19. The corresponding freestream tem- 
perature and pressure, which may be found in tables, are 
T, = 235 K and pm = 9.7710-’ atm. The freestream 
velocity is in this case v, = 5839 m/s. A typical value of the 
body nose radius l/~ = R, = 1 m has been chosen, the wall 
temperature is taken to be T, = 1500 K, and it is assumed 
that the body surface is fully catalytic, i.e., that species at the 
wall are in chemical equilibrium at the wall temperature. An 
air dissociation reaction mechanism due to Bortner [16] 
was used and is listed in Table I. 

i =s, (71) 

5 = n/h), (72) 

u = ifi(i, a, (73) 

r = 12(5,5), (74) 

P = P, + i2K, 0, (75) 

We thus consider a new unknown function Xr= 
(a, U, j?, T, Y,, . . . . Y,, cr) defined on the unit interval [0, l] 
and we must solve the two-point boundary value problem 
(&?i, 6r, gi)(L@) = 0. We consider a discretization C of the 
streamwise domain 

The solution typically requires between 40 to 60 adap- 
tively chosen grid points in the r direction. After the grid 
adaptation the grid points were concentrated near the shock 
and body surface. 

z= (o=[l<[2< ... <&=l}, (76) 

Figure 2 displays the reduced pressure B/I jjb ) and velocity 
components fi/lV,l and G/lU#l profiles. Note that the 
dependent variables are plotted as functions of in = n/R,. 
The corresponding shock values of these variables are 
found to be p, = -4552 Pa/m2, ii, = 5839 s-l and Us = 
-693.4 m/s, and the shock standoff distance is 5 = 7.24 cm. 
The hydrodynamic variables jj, U, and U present moderate 
relative changes and, as a consequence, the convergence 
rate of the method is quite large. 

The temperature profile displayed in Fig. 3 exhibits a 
classical S-shape. It is worth noting that the profile never 
levels off so that one cannot assume that chemical equi- 
librium is reached somewhere in the layer. In the first part 

and we seek a set of discrete approximations X2 of X5’ at 
l=lj* 

TABLE I 

The space marching procedure then consists in solving a 
succession of discrete problems which can be written 

Reaction Mecanism for Air Dissociation 

Reaction A B E 

Fgx$, X2-l) = 0, jE { 1, . . . . J}, (77) 

where X2 is the solution on the stagnation streamline. 
These J problems are solved using fully-implicit finite 
differences and fully-coupled Newton iterations with the 
convergence criterion described previously. 

No attempt was made to save CPU time by using, for 
instance, linearized implicit finite differences or freezing the 
transport coefficients during the Jacobian evaluations or 
even using the same Jacobian for several steps in the 
streamwise direction. All these improvements could be 
implemented easily in the code for repetitive applications. 
Even in its present form it operates on workstations or 
minicomputers. 

1.f O,+M+O+O+M” 3.61E18 -1.0 118.OE03 
1.r O+O+M-+O,+M” 3.01E15 -0.5 0.0 
2.f N,+M+N+N+M* 1.92E17 -0.5 2247E03 
2.r N+N+M+N,+M* 1.09E16 -0.5 0.0 
3.f N,+N+N+N+N 4.15E22 - 1.5 224.7E03 
3.r N+N+N+N*+N 2.32E21 - 1.5 0.0 
4.f NO+M-tN+O+M’ 3.97E20 -1.5 150.2E03 
4.r N+O+M+NO+M’ l.OlE20 - 1.5 0.0 
5.f NO+O+02+N 3.18E09 +1.0 39.1 E03 
5.r 02+N-+NO+0 9.63Ell +0.5 7.152E093 
6.f N,+O+NO+N 6.75E13 +o.o 74.5EO3 
6.r NO+N-+N2+0 1.50E13 +o.o 0.0 
7.f N+O+NO++e- 9.03E09 f0.5 64.37E03 
7.r NO++e-+N+O 1.80E19 - 1.0 0.0 

4. NUMERICAL RESULTS 

Note. Coeficients in the form k,= AT” exp( - E/RT). Units are moles, 
centimeters, seconds, Kelvins, calories/mole. 

’ Third body efficiencies: a,(OZ) = 9, a,(O) = 25; a,(N,) = 2, 
a,(NO+)=O; a,(~)=O. 

*Third body efficiencies: a,(N,) = 2.5, a,(N) = 0; a,(NO+ ) = 0, 
a2(e-)=O. 

We have applied the numerical method discussed in the c Third body efficiencies: a,(O) = 20, a,(N) = 20; a4(NO) = 20, 

previous section to determine the structure of a viscous a,(NO+)=O;a,(e-)=O. 
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FIG. 2. Reduced pressure P/~J?(c?)[ and reduced velocity components fi/l$a)l and U/lU(cr)l plotted as a function of the reduced coordinate rcn on the 
stagnation streamline. 

of the domain, from the shock to approximately the middle 
of the shock layer, the temperature decreases from 
Tw 12500 K to Tz 7500 K because of molecular dissocia- 
tion. In the second part of the domain, in the vicinity of the 
body surface, the temperature decreases rapidly to the wall 
temperature. 

The species mass fractions are shown in Fig. 4. Strong 
dissociation of molecular oxygen takes place behind the 
shock. However, the temperature is not high enough to 
ensure a complete dissociation of NZ, although there is a 
noticeable production of atomic nitrogen. Nitrogen oxyde 

NO is formed with two characteristic peaks. Because the 
body surface is assumed to be fully catalytic and since the 
wall temperature is quite low, there is a strong recombina- 
tion of atoms in the vicinity of the wall, leading to a rapid 
increase of the 0, concentration. 

On the other hand, Figs. 5-9 display numerical calcula- 
tions for the same sphere (R, = 1 m), but corresponding to 
z = 75 km and a larger Mach number, M, = 25. The 
freestream properties are now T, = 2.47 10 ~ 5 atm. The 
freestream velocity is then u, = 718 1 m/s. Under these 
conditions, Fig. 5 displays the shock standoff distance as a 

Shock d 

0 I I I I I I I 

.m .OlO 

Non-dimezonal dizce nogl to thiwbody see 
,470 

FIG. 3. Temperature profile on the stagnation streamline. 

581/102/Z-6 
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FIG. 4. Species mass fraction profiles on the stagnation streamline. 

function of the streamwise coordinate. The present method 
using modified shock relations (34)-(44) is compared with 
the TVSL approximation of Davis. A significant dis- 
crepancy is observed, especially downstream where the cur- 
vature of the body has a strong effect. In this region, Davis’ 
method gives a much greater value of the shock standoff 
distance. 

The difference may be explained as follows. First, one has 
to remember that the curvature of the sphere keeps a finite 
(constant) value at each downstream station. As a conse- 
quence, the streamlines diverge from the body surface at a 

certain distance from the stagnation point. The normal 
component u of the velocity vector will then take positive 
values across the shock layer. If one now looks at Fig. 6, one 
notices that even for large values of s, Davies’ shock rela- 
tions yield a negative value for the normal velocity at the 
shock, v,. As the shock standoff distance is adjusted to take 
into account u,, the shock layer width must strongly 
increase to include a first region, where o is positive, as 
mentioned previously, and a second region which allows u 
to reach its negative value at the shock (see Fig. 7). In con- 
trast, the method described in the present paper yields 

1 

0 IO 20 30 40 50 60 70 SO 90 100 110 

Streamrise coordinate (cm) 

FIG. 5. Shock standoff distance along the sphere. Solid line corresponds to the present shock relations. Broken line is obtained with the standard 
TVSL shock relations. 
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FIG. 6. Velocity component u(u) at the shock, taken in the direction normal to the sphere, plotted as a function of the streamwise coordinate. 

positive values of u, for large values of s. Positive monotonic 
normal velocity profiles are generated across the shock layer 
and a more realistic evolution of the shock shape is 
obtained. Note again, that another procedure providing 
improved shock shapes consists in using an Euler code, 
yielding the shock position along the body and coupling this 
code to the full VSL calculation as in Ref. [7]. 

Finally, Figs. 8 and 9 present temperature and electron 
density profiles along the sphere. The distributions of these 
quantities diminish monotonically as the streamwise 
variable increases. This behavior corresponds to the 

decrease of the shock angle and shock strength in the 
downstream direction. Of course, this effect is slightly com- 
pensated by transport and convection in the streamwise 
direction. 

All the calculations described in this section were 
performed on an IBM 4381 computer. Typically the con- 
vergence on the stagnation line starting from linear profiles 
requires 50 pseudo-unsteady iterations and 5 to 10 steady 
iterations. The marching procedure requires less than five 
steady full or modified Newton iterations at each station. 
Other configurations have been treated and, in particular, 

300.000 

0 5 
NorGl eoo:iinate2’( cm) 

25 30 

FIG. 7. Profiles of normal velocity plotted in the downstream section s = 1 m. 
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FIG. 8. Temperature profiles plotted in 12 successive stations along the sphere. 

hyperbolid shapes of the kind considered by Davis [S]. For 
such geometries the results obtained by the two methods are 
quite close. These test calculations, as well as many details, 
are contained in Ref. [28]. 

5. CONCLUSION 

Newton iterations, both steady and unsteady, and adaptive 
gridding. New boundary conditions are also derived at the 
shock. These conditions replace the classical thin viscous 
shock layer relations and lead to an improved calculation of 
the shape of the shock. This procedure is currently used to 
investigate more complex systems which include thermo- 
dynamic nonequilibrium. 

The viscous shock layer problem of hypersonic flow This method which yields simultaneously the flow 
theory is investigated in this article. This is a free boundary variables and the shock position has the advantage of 
problem as the position of the shock is one of the unknown coupling all the components of the dependent solution. 
variables. By introducing a reduced coordinate, the problem Block methods of this type are generally faster and more 
is transformed into a nonlinear eigenvalue problem. The robust than methods -which 
resulting two-point boundary value problem is solved using component. 
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FIG. 9. Electron density profiles plotted in 12 successive stations along the sphere. 
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